Efficient D-Optimal Design of Experiments for Infinite-Dimensional Bayesian Linear Inverse Problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient D-optimal Design of Experiments for Infinite-dimensional Bayesian Linear Inverse Problems

We develop a computational framework for D-optimal experimental design for PDEbased Bayesian linear inverse problems with infinite-dimensional parameters. We follow a formulation of the experimental design problem that remains valid in the infinite-dimensional limit. The optimal design is obtained by solving an optimization problem that involves repeated evaluation of the logdeterminant of high...

متن کامل

A-Optimal Design of Experiments for Infinite-Dimensional Bayesian Linear Inverse Problems with Regularized ℓ0-Sparsification

We present an efficient method for computing A-optimal experimental designs for infinite-dimensional Bayesian linear inverse problems governed by partial differential equations (PDEs). Specifically, we address the problem of optimizing the location of sensors (at which observational data are collected) to minimize the uncertainty in the parameters estimated by solving the inverse problem, where...

متن کامل

Goal-Oriented Optimal Design of Experiments for Large-Scale Bayesian Linear Inverse Problems

We develop a framework for goal oriented optimal design of experiments (GOODE) for largescale Bayesian linear inverse problems governed by PDEs. This framework differs from classical Bayesian optimal design of experiments (ODE) in the following sense: we seek experimental designs that minimize the posterior uncertainty in a predicted quantity of interest (QoI) rather than the estimated paramete...

متن کامل

An Efficient Bayesian Optimal Design for Logistic Model

Consider a Bayesian optimal design with many support points which poses the problem of collecting data with a few number of observations at each design point. Under such a scenario the asymptotic property of using Fisher information matrix for approximating the covariance matrix of posterior ML estimators might be doubtful. We suggest to use Bhattcharyya matrix in deriving the information matri...

متن کامل

Geometric MCMC for infinite-dimensional inverse problems

Bayesian inverse problems often involve sampling posterior distributions on infinite-dimensional function spaces. Traditional Markov chain Monte Carlo (MCMC) algorithms are characterized by deteriorating mixing times upon meshrefinement, when the finite-dimensional approximations become more accurate. Such methods are typically forced to reduce step-sizes as the discretization gets finer, and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2018

ISSN: 1064-8275,1095-7197

DOI: 10.1137/17m115712x