Efficient D-Optimal Design of Experiments for Infinite-Dimensional Bayesian Linear Inverse Problems
نویسندگان
چکیده
منابع مشابه
Efficient D-optimal Design of Experiments for Infinite-dimensional Bayesian Linear Inverse Problems
We develop a computational framework for D-optimal experimental design for PDEbased Bayesian linear inverse problems with infinite-dimensional parameters. We follow a formulation of the experimental design problem that remains valid in the infinite-dimensional limit. The optimal design is obtained by solving an optimization problem that involves repeated evaluation of the logdeterminant of high...
متن کاملA-Optimal Design of Experiments for Infinite-Dimensional Bayesian Linear Inverse Problems with Regularized ℓ0-Sparsification
We present an efficient method for computing A-optimal experimental designs for infinite-dimensional Bayesian linear inverse problems governed by partial differential equations (PDEs). Specifically, we address the problem of optimizing the location of sensors (at which observational data are collected) to minimize the uncertainty in the parameters estimated by solving the inverse problem, where...
متن کاملGoal-Oriented Optimal Design of Experiments for Large-Scale Bayesian Linear Inverse Problems
We develop a framework for goal oriented optimal design of experiments (GOODE) for largescale Bayesian linear inverse problems governed by PDEs. This framework differs from classical Bayesian optimal design of experiments (ODE) in the following sense: we seek experimental designs that minimize the posterior uncertainty in a predicted quantity of interest (QoI) rather than the estimated paramete...
متن کاملAn Efficient Bayesian Optimal Design for Logistic Model
Consider a Bayesian optimal design with many support points which poses the problem of collecting data with a few number of observations at each design point. Under such a scenario the asymptotic property of using Fisher information matrix for approximating the covariance matrix of posterior ML estimators might be doubtful. We suggest to use Bhattcharyya matrix in deriving the information matri...
متن کاملGeometric MCMC for infinite-dimensional inverse problems
Bayesian inverse problems often involve sampling posterior distributions on infinite-dimensional function spaces. Traditional Markov chain Monte Carlo (MCMC) algorithms are characterized by deteriorating mixing times upon meshrefinement, when the finite-dimensional approximations become more accurate. Such methods are typically forced to reduce step-sizes as the discretization gets finer, and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2018
ISSN: 1064-8275,1095-7197
DOI: 10.1137/17m115712x